Temperature compensation of auxin dependent developmental patterning.
نویسنده
چکیده
The establishment of localized auxin gradients plays a central role in developmental patterning in plants. Auxin levels and responses have been shown to increase with temperature although developmental patterning is not affected. This suggests the existence of a homeostatic mechanism that ensures that patterning occurs normally over a range of temperatures. We recently described the cloning and characterization of BOBBER1 (BOB1), an Arabidopsis gene which encodes a small heat shock protein. BOB1 is required for the establishment of auxin gradients and for normal developmental patterning. BOB1 is also required for organismal thermotolerance and localizes to heat shock granules at elevated temperatures. Since BOB1 functions in both temperature responses and developmental patterning we propose that BOB1 may encode a component of a developmental temperature compensation mechanism.
منابع مشابه
Leaf asymmetry as a developmental constraint imposed by auxin-dependent phyllotactic patterning.
In a majority of species, leaf development is thought to proceed in a bilaterally symmetric fashion without systematic asymmetries. This is despite the left and right sides of an initiating primordium occupying niches that differ in their distance from sinks and sources of auxin. Here, we revisit an existing model of auxin transport sufficient to recreate spiral phyllotactic patterns and find p...
متن کاملPatterning of Leaf Vein Networks by Convergent Auxin Transport Pathways
The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patter...
متن کاملNO VEIN mediates auxin-dependent specification and patterning in the Arabidopsis embryo, shoot, and root.
Local efflux-dependent auxin gradients and maxima mediate organ and tissue development in plants. Auxin efflux is regulated by dynamic expression and subcellular localization of the PIN auxin-efflux proteins, which appears to be established not only through a self-organizing auxin-mediated polarization mechanism, but also through other means, such as cell fate determination and auxin-independen...
متن کاملCell Polarity and Patterning by PIN Trafficking through Early Endosomal Compartments in Arabidopsis thaliana
PIN-FORMED (PIN) proteins localize asymmetrically at the plasma membrane and mediate intercellular polar transport of the plant hormone auxin that is crucial for a multitude of developmental processes in plants. PIN localization is under extensive control by environmental or developmental cues, but mechanisms regulating PIN localization are not fully understood. Here we show that early endosoma...
متن کاملROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis.
ROP GTPases are crucial for the establishment of cell polarity and for controlling responses to hormones and environmental signals in plants. In this work, we show that ROP3 plays important roles in embryo development and auxin-dependent plant growth. Loss-of-function and dominant-negative (DN) mutations in ROP3 induced a spectrum of similar defects starting with altered cell division patternin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant signaling & behavior
دوره 4 12 شماره
صفحات -
تاریخ انتشار 2009